TRANSIENT-STATE SORET-COEFFICIENT
DETERMINATION FOR A THERMAL-
DIFFUSION COLUMN. IV

G. D. Rabinovich and Zh, V. Lepekhina UDC 621.039.3
Another method is given for approximating a solution previously obtained for small times,
and a comparison is made with experiment.

An asymptotic solution has been derived [1,2] for the transient response in a thermal diffusion column
having volumés at the ends:
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where the plus sign relates to the end of the column at which the concentration of the target component in-
creases for ¢y < 0.5, while the minus sign relates to the other end; the signs are interchanged if ¢4 > 0.5.

An approximation has been given [2, 3] for the solution to (1) in the form
v=p,—r V%, 2)

which, however, has the disadvantage that, although it describes (1) closely, it approximates the derivative
with a rather large error, and the derivative is an important quantity in calculating the Soret coefficient from
measurements in terms of Ac/T versus 71/2, This disadvantage has [4] been overcome to a certain extent by
splitting up the entire range of variation in x into a series of small ranges; however, then the Soret coefficient
has to be derived by successive approximations, whichmakes the procedure more laborious.

For this reason, we have derived another approximation for the v defined by (1), which describes the
function closely, and also the derivative. It is difficult to meet both of these conditions with a fairly simple
function over a wide range in x, but there is no particular need to do this, since even x up to 0.16 correspond
to time intervals sufficient for performing an experiment.

We have found that the following function satisfies both the above conditions:

[

Vx P+—ﬁ.

i.e., v/Vx is a linear function of 1/VXx.
From (3) we get the derivative d(v/vX)/d(1/VX) as a constant equal to r.
On the other hand,

d/Ve _ . = dv
T R T @

and from (1) we have
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TABLE 1. Relation of r to Dimensionless Time x

x

ye*u) i i H
| o.0025 0,01 ! 0os | na0 | 0.8
2 0,998 ' 0,990 {0,973 0,956 0,893
1,0 0,999 0,984 0,954 0,948
—2 1,0 ‘ 0,999 0,998 0,991 0,982
f ! I
0/%?
5
0
Fig.1. Relation of v/vX to 1/vX for
y¥w of: 1) —10/3; 2) 0; 3) 8.
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If we substitute (5) into (4), the right side of (4) should be approximately constant for a given k for all values
x = 0.16; Table 1 gives calculations for three values of y5w, which show that the best approximation to the
condition r ~ const is attained in the range yfw = 0, which means that the experiment should be arranged to
meet this condition. For instance, if ¢y < 0.5 and the target component accumulates at the bottom of the col-
umn, then the samples for analysis should be taken from the upper part, and vice versa if ¢, > 0.5. We use
the relationship established by Prigogine [5], which indicates that usually the component that accumulates in
the cold region is the one with the larger value of the solubility parameter vE,;/V, — vE,/V,, where E and V
are, respectively, the energy of evaporation and the molar volume for each of the pure components; then one
can determine before starting the experiment which end of the column is to be sampled.

Table 1 shows that r differs little from 1 for various x and y{w, and with an error not exceeding 4% we
can assume it as constant for r = 0.98; Fig.1 shows this more clearly, being constructed in terms of v/vx and
1/Vx as coordinates from calculations based on (1). It is clear that, within the error of the graphical construc-
tion, (3) is closely described by straight lines with the same slope of 0.985 for the range — 3.33 < yw < + 8;
as regards the parameter p in (3), the latter is closely approximated by the following linear relation for the
same range in yfuw:

p = — 0.5575 - 0.0229 y*a. ®)

We substitute for v and x in (3) and use the expressions for yg, «w, and 9 together with the following
notation:

H oz reg(1—cg) H
,;W“ (1 —c) ¥ mK=h, =0 (~—--A—4 07 =n ™
to get instead of (3) that
Ac n
—=h+ —. (3)
,53.-- l T

Then the measurements may be processed with Ac/ 73/2 and 1/VT as coordinates, and the points corresponding
to the concentration shift after a certain time should lie on a straight line of slope n that meets the ordinate
axis with an intercept h.
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TABLE 2, Temperatures and Concentration Change for CCl, at
the Bottom of a Column for a CCl,;~Cyclohexane Mixture (¢, =

64.8 wt, %)
Run e o a —1/2. 102 «—3/2,1¢7
i Ac-102 Ty, °K T,. °K AT, °C T . '
No. ‘Tlme »Sec ! : sec1/2 sec3/?
i 900 1,00 308,3 296,0 12,3 3,33 3,69
2 1800 1,88 311,3 298,8 12,5 2,36 2,47
3 2700 2,69 308,8 296,2 12,6 1,93 1,94
4 3600 3,45 308,5 296,7 11,8 1,66 1,58
5 5400 4,84 308,5 296,0 12,5 1,36 1,22
b 7440 6,20 310,0 298,6 11,4 1,16 0,967
Mean 309,2 297,0 12,2

TABLE 3. Mean Values for s+10° Reported for Equimolar CCl,~

Cyclohexane
OE e . 61, 25°C l 7], 25°C (81 ] [13]
]
5,53 ] 5,18 l 5,9 l 5,22 1 5,6
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Fig.2. Relation of p? to Véw. Fig. 3. Results from processing

data of Table 2.

From (7) we have
2
h pVmK . H : pn _ 9)

n? e(l—c)r’H =~ VmK (1 —co) hr?

We substitute for H, K, and m to get the following expression for the Soret coefficient:

S /10 pe 5
sVD=V i U=y s 10

On the other hand, we have from (7) that

ho_p 1 _eopoAT
n r oy D Vo'l
whence
_ pn . goSPAT
D= P . 8T 11)
oV D=5 VoL

The guantity p appearing in (10) and (11) is not known when the experiment is being formulated, since (6) shows
that it is dependent on the unknown parameter ygw.
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The latter, however, can be put in the following form if we replace yg by its value and « by the value
given by (11):

504 bpn AT -

B o= e . s}'D
be Vo hr ] }
or, if we use (10), by
24,3
y:‘m = ° p " ’
Co (1 —cp) h*r®
whence we have
[ AN
P=c{l—c) — L— ) yro. 12)
b n)

Formula (12) thus relates p to y3w for the detailed conditions of the experiment defined by h and n,

If we eliminate yaw from (6) and (12), we get the result for p; however, a graphical method of deter-

mining p is more convenient, and (6) is shown as p® = f (y&w) in Fig. 2 for this purpose.

We use the measurements to calculate the coefficient to y¥« in (12) and draw a straight line with this
slope through the origin to meet the curve p* = f (y5w), which gives the desired value of p*. Note that p and r
may be positive or negative, the sign being dependent on the concentration change at the end of the column
used for sampling. If Ac > 0, then p is always negative, and r > 0; if, on the other hand, Ac < 0, then p is
positive, but r < 0. The above method was tested with a mixture of carbon tetrachloride and cyclohexane
containing 64,8% of the first by weight. This mixture was chosen for the following reasons: first, it had been
studied in detail on several occasions in a cell free from convection [6], in a flow cell [7], and in the steady
state of a thermal gravitational column [8-10,13]. The results obtained in these ways differ little one from
the other and thus can serve to test our method; secondly, extensive evidence is available on the diffusion co-
efficient at a variety of temperatures [12] for this mixture, and this is necessary in calculating the Soret co-
efficient from (10).

A cylindrical column as described in (11] has a working height L = 35 ¢m; the outer and inner cylinders
were made with a tolerance of =5 um, while the mean gap was measured at 6 = 0.263 mm. The surface tem-
peratures of the outer and inner cylinders were measured with copper—constantan thermocouples, which were
calibrated after insertion in the body of the cylinder. The emf was measured with a PP-63 potentiometer.
The upper end of the column was joined to a large vessel (250 cm?) by a thermal siphon, which maintained a
constant concentration at that end, which was equal to the initial value. In the lower part of the inner cylinder
there was a recess of a volume of 0.6 cm®, The heating and cooling were provided by U-10 thermostats,

The method of performing the experiments has been described [2] and differed from the latter only in
certain details associated with the presence of the vessel at the end. After a preset time, a 1-cm® sample was
taken from the column for analysis with an ITR-1 interferometer, whereupon the run was terminated, the con-
tents were removed, a fresh filling was supplied, and a fresh run was begun. The coefficient of variation for
the concentration measurement for this mixture was +0.012%, ‘

Table 2 gives the results, v@ich show that the mean temperature difference was AT =12.12°C and the
mean temperature in the gap was T = 303.1°C.

Columns 7 and 8 have been used to construct Fig.3, which gives h =—4.8.1078 sec~*/2 and n = 1.26-10~5
sec—1/2; the slope in the linear approximation c(1 —c) =« +be for the concentration shift was b = —0.296 in
these experiments, i.e., y;w < 0, and then (12) gives

Pt = —0.85 y¥o. (13)

The relationship of (13) is shown by the broken straight line in'Fig.2, which meets the curve at a point corre-
sponding to p? = 0.318 and ykw =—0.38; as Ac > 0 here, we have p = —0.564.

These results give, with (10) and ¢; = 0,648, that 5D =2.,16-10-7 deg- m-sec™1/%,
The diffusion coefficient was derived from the following formula [12]:

D-10°(m® /sec) = 1.481 — 0,187 X - 0.024 (f — 25) - 0.0024 X (¢ — 25),

in which X is the molar concentration of carbon tetrachloride, which in our case was 0.502.
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We substitute this value for X with t = 30°C to get D = 1.514-10~? m%/sec, and also s=5.53-107% deg™};
Table 3 compares this result with those given by others. The mean result from the last four columns is s =
5.47-10"% deg™!, and our value differs from this by 1%.

We then determine wvD from (11) on the basis that [12] p =1.158-10° kg/m?, n = 0.856-10-3N« sec/m?,
B =1.223-107% deg™! for this mixture; then wvD = 2.58-10-% m-sec~!/?, and the above value for the diffusion
coefficient gives w = 0.0648, The definition (see the section "Notation") indicates that w is the ratio of the
volume at the end of the column to the volume of the working part of the column, and the latter is 8.67 cm?® on
the basis of the known geometry (L =0.35 m, § = 2.63:10"*m, B = 9.42-10~%2 m); consequently, the volume at
the lower end of the column was 8.67-0.0648 = 0.56 cm®, which agrees closely with the volume of the recess
there.

The next stage in testing the results given in Table 3 is to determine ylw and compare it with the value
given by the graphical construction in Fig.2; as Vew = byewe, we calculate that yo =19 and get that ylw =
-0.365, which is alsoextremely closetothe value Yow =—0.38 found from Fig. 2.

It remains to establish in what range in x our experiments were performed; substitution of the known
values for the quantities gives x =4.58-10~5, where 7 is in sec. Table 2 then gives that four of the runs were
in the range x < 0.16, and then Table 1 indicates that this provides reasonably high accuracy in approximating
the slope in (3). Note that runs 5 and 6 of Table 2 lie outside this restricted range in x, but the results still
fit very closely to the straight line in Fig.1, which indicates that the range of permissible values of x might
almost be doubled within the accuracy of graphical construction.

NOTATION

¢, concentration; 0 = H2r/mK; m = pB6; H = sgp?B3(AT)? B/6! n; K = g?p3p%" (AT)? B/9! 72D; 7, time;
"p, density; 8, volumetric expansion coefficient; 6, size of gap; AT =T;~-Ty; T = 1/2 (Ty +Ty); Ty, Ty, temper-
atures of hot and cold surfaces; B, perimeter of gap; 0, dynamic viscosity; D, diffusion coefficient; y = Hz/K;
z, vertical coordinate; yo =HL/K; L, working height; w = M/mL; M, mass of mixture in volumes at ends; s,
Soret coefficient;

b (c— ¢) + 2k—1
¢o (1 —¢p) 2x

1

P
y:“oe

_1. ¥ _ b =tk I_ 2 g*
+ 9’ Yy =0les X —( et 2) >
6* = b%9, Indices: e, positive end of the column; 0, initial value.
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